

Defined Approaches in the GHS: Skin Sensitization

SCHC – September 22, 2022

Joanna Matheson, Toxicologist - Nanotechnology

Disclaimer: This presentation was prepared by CPSC Staff and may not necessarily reflect the views of the Commission.

Outline

- Informal working group on the use of non-animal alternatives (NAMs)
- Skin corrosion/irritation (chapter 3.2)
- Serious eye damage/eye irritation (chapter 3.3)
- Defined Approaches for skin sensitization (chapter 3.4)
- Proposed changes to chapter 3.4

Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

Use of non-animal testing methods:

 Netherlands and UK proposed several activities for inclusion in the work programme; activities regarding the use of nonanimal approaches (*in silico, in vitro, in chemico*) for classifying substances and mixtures.

Started with skin corrosion and irritation in 2016 (chapter 3.2)

Non-animal Alternative Approaches

- Informal working group on the use of non-animal alternatives
 - Identify and evaluate alternative methods/approaches (*e.g., in vitro, in chemico*, read across, grouping, quantitative structure-activity relationships [QSARs]) and guidance useful for classification.
 - Determine whether an integrated or tiered approach should be developed for substances and mixtures; and, whether there is a need for new or modified criteria.
 - Prepare draft amendments and additions that include criteria, notes, decision logics, guidance.

GHS Skin Corrosion/Irritation Updates

Key revisions and additions include:

- Sections on *in vitro/ex vivo test methods*: no one single test for corrosion and irritation, some methods cannot distinguish between subcategories, Cat 3 (mild irritants) is not covered by NAMs
- Section on non-test methods (SARs, QSARs, read across, expert systems), use on a case-by-case basis
- Background guidance section

Figure 3.2.1: Application of the tiered approach for skin corrosion and irritation^a

Skin Corrosion/Irritation Guidance Section: A Selection

Table 3.2.6: Skin corrosion criteria for in vitro/ex vivo methods

Category	OECD Test Guideline 40 (Transcutaneous Electrical Resistance test method)	Reconstructed human Epiderm	DECD Test Guideline 4 nis test methods: Metho x 2 of OECD Test Guid	ods 1, 2, 3, 4 and 5 as n	nu mb cred		Guideline 435 arrier test method]
	the skin is measured using transcutaneous electrical resistance (TER). A confirmatory test of opositive results using a dye- binding step that assesses if an increase in ionic permeability is due to the physical destruction of the structure convexes in performed in case of a reduced TER (less than or around 5 kΩ) in the absence of devices a dramage.	Four similar methods where the test do reconstructed human epidemis (RhE) human skin. The test methods is based of the <i>strutum correcurve</i> by diffacion or er lissue viability is a assested by enzymat is quantitatively measured after extract their ability to decrease tissue viability The criteria are based on the penent tis) which closely mimics the on the premise that corn prosion and are cytotoxic atic conversion of the dy clion from the tis ares. O ty below defined threshol	the properties of the upp tostive chemicals are able to the cells in the under ye MTT into a blue form Jornosive chemicals are i ld values.	per parts of e to penetrate rdying layers, nazan salt that identi fied by	comprising a synthet barrier and a chemics (CDS). Barrier dans the application of the surface of the synthe The criteria are base penetration/beakthre chemical through the	age is measured after e test chemical to the tic membrane barrier. d on the mean ough time of the e membrane barrier.	
	The criteria are based on the mean TER value in kΩ and sometimes on dye content.					Type 1 chemicals (high acid/al kaline reserve)	Type 2 chemicals (low acid/alkaline reserve)	
1	 (a) mean TER value ≤ 5 kΩ and the skin disos are obviously damaged (e.g. performed), or (b) mean TER value ≤ 5 kΩ and (i) the skin disos show no obvious damage (e.g. performion), but (ii) the subsequent confirmatory testing of positive results using a dye binding step is positive. 	Method 1 < 35 % after 3, 60 or 240 min exposure	Methods 2, 3, 4, 5 < 50 % after 3 min exp ≥ 50 % after 3 min exp exposure	posure; or posure and <15 % after	7 60 min	≤ 240 min	≤ 60 min	United Nations - All r
1A	Not applicable	Method 1 < 35 % after 3 min exposure	Method 2 < 25 % after 3 min exposure		Methods 4, 5 <15 % after 3	0-3 min.	0-3 m in	lg ma
1B 1C	4	≥ 35 % after 3 min exposure and < 35 % after 60 min exposure	≥ 25 % after 3 min exposure and fulfilling criteria for	≥ 18 % after 3 exposure and fulfilling crite				Table 3.2.7: Skin irritation criteria for <i>in vitro</i> methods
			Category 1	Category 1	Catego		est Guideline 439 ucted Human Epid	dermis test methods
Not classified as skin corrosive	 (a) the mean TER value > 5 kΩ, or (b) the mean TER value ≤ 5 kΩ, and (i) the skin discs show no obvious damage (e.g., perforation), and (ii) the subsequent confirmatory testing of positive results using a dye binding step is negative 	≥ 35% after 240 min exposure	≥ 50% after 3 min exj exposure	posure and ≥ 15		Four simil properties measured	lar methods (1-4) w of the upper parts after extraction from	where the test chemical is applied topically to a three-dimensional reconstructed human epidermis (RhE) which closely mimics the of human skin. Tissue viability is assessed by enzymatic conversion of the dye MTT into a blue formazan salt that is quantitatively m the tissues. Positive chemicals are identified by their ability to decrease tissue viability below defined threshold levels. an percent tissue viability after exposure and post-treatment incubation.
					1 or 2	Note: The	cent tissue viability RhE test methods c on its final classific	r (<) 50 %. covered by this test guideline cannot resolve between GHS categories 1 and 2. Further information on skin corrosion will be required cation (see also the OECD Guidance Document 203).
					2	Mean per	cent tissue viability	$_{2}$ \leq 50 % and the test chemical is found to be noncorrosive (e.g. based on Test Guideline 430, 431 or 435)
					as skin irr	ritant Note: The		> 50 % covered by this test guideline cannot resolve between GHS optional Category 3 and not classified as skin irritant. Further n is required for those authorities that want to have more than one skin irritation category.

GHS Serious Eye Damage and Eye Irritation

Key revisions and additions include:

- Classification based on in vitro/ex vivo test methods
- Classification based on Defined Approaches (DAs)
- Section on non-test methods (SARs, QSARs, read across, expert systems)
- Extensive background guidance section

Figure 3.3.1: Application of the tiered approach for serious eye damage/eye irritation*

Proposed GHS Skin Sensitization Updates

Key revisions and additions include:

- Classification based on human data, standard animal data, DAs, *in chemico/in vitro data*, and non-test methods
 - Separate sections for each
 - Non-test methods include computer models predicting qualitative structure activity relationships (structural alerts, SAR) or QSARs, computer expert systems, and read-across using analogue and category approaches
- Classification in a tiered approach
- Extensive background guidance section

Draft Defined Approaches in GHS Chapter 3.4

- Consist of a rule-based combination of data obtained from a predefined set of different information sources (*e.g.*, *in chemico* methods, *in vitro* methods, physico-chemical properties, non-test methods)
- DAs can be useful strategies of combining data for classifying substances (and mixtures) because most single non-animal methods are not able to replace *in vivo* methods fully for most regulatory endpoints
- Results are conclusive for classification for skin sensitization if the criteria of the defined approach are fulfilled (Table 3.4.6)
- Data from a defined approach can only be used for classification when the tested substance is within the applicability domain of the DA used.

Proposed Skin Sensitization GHS Updates -General

- For classification of skin sensitizers, all available and relevant information is collected and its quality in terms of adequacy and reliability is assessed.
- Classification should be based on mutually acceptable data/results generated using methods and/or DAs that are validated according to international procedures. These include both OECD Guidelines and equivalent methods/DAs.
- In chemico/in vitro data can only be used for classification when the tested substance is within the applicability domain of the test method used.

Proposed GHS Table 3.4.6: Criteria for DAs

Ostamon		
Category	2o3 approach	ITSv1 and ITSv2
	Based on <i>in chemico</i> (KE1-DPRA) and <i>in vitro</i> (KE2-KeratinoSens [™] /KE3-hCLAT). Assays are run for two KEs, and if these assays provide consistent results, then the chemical is predicted accordingly as sensitizer or non-sensitizer. If the first two assays provide discordant results, the assay for the remaining KE is run. The overall result is based on the two concordant findings taking into account the confidence on the obtained predictions as described in the GL.	 ITSv1 based on <i>in chemico</i> (KE1-DPRA) and <i>in vitro</i> (KE3-hCLAT) data, and <i>in silico</i> (Derek Nexus) predictions. ITSv2 based on <i>in chemico</i> (KE1-DPRA) and <i>in vitro</i> (KE3-hCLAT) data, and <i>in silico</i> (OECD QSAR Toolbox) predictions. Quantitative results of hCLAT and DPRA are converted into a score from 0 to 3. For the <i>in silico</i> prediction, a positive outcome is assigned a score of 1; a negative outcome a score of 0. When these scores have been assessed, a total battery score, ranging from 0 to 7, calculated by summing the individual scores, is used to predict the sensitizing potential (hazard ID; Cat 1 vs. NC) and potency (Cat 1A, Cat 1B and NC).
1	2 out of 3, or 3 out of 3 positive predictions	Total battery score ≥ 2
1A	Not applicable	Total battery score ≥ 6-7
1B	Not applicable	Total battery score ≥ 2-5
Not Classified	2 out of 3, or 3 out of 3 negative predictions	Total battery score < 2

Proposed GHS Tiered Approach

- A tiered approach organizes the available information on skin sensitization into tiers and provides for decision-making in a structured and sequential manner.
- Classification results when the information consistently satisfies the criteria. When available information gives inconsistent and/or conflicting results within a tier, classification is made using a weight-of-evidence assessment within that tier.
- When different tiers give inconsistent and/or conflicting results or where data individually are insufficient to conclude on the classification, an overall weightof-evidence assessment is used.

Stand-alone and non-Stand-alone methods in the GHS chapter

- When already considered within a DA, non-stand-alone *in chemico/in vitro* methods should not be considered as an additional line of evidence.
- Other non-stand-alone *in chemico/in vitro* methods that are validated according to international procedures (*e.g.*, OECD Test Guidelines 442C (Annex I and II), 442D, 442E) are accepted as supportive evidence and should within Tier 1 only be used in combination with other types of data in DAs.
- Other validated *in chemico/in vitro* test methods accepted by some competent authorities are described in the guidance section. A competent authority may decide which classification criteria, if any, should be applied for these test methods to conclude on classification.

GHS Tier 1 Methods and Approaches

- For classification of a substance, evidence in Tier 1 may include data from any or all of the following lines of evidence:
 - Experimental studies in humans (*e.g.*, predictive patch testing, HRIPT, HMT)
 - see paragraph 1.3.2.4.7, criteria in 3.4.2.2.2.2 (a) and 3.4.2.2.2.3 (a) and guidance 3.4.5.3.2
 - Epidemiological studies (*e.g.*, case control studies, prospective studies) assessing allergic contact dermatitis
 - Well-documented cases of allergic contact dermatitis
 - Appropriate animal studies
 - Defined approaches validated according to international procedures
 - Stand-alone *in chemico/in vitro* methods validated according to international procedures

Proposed GHS Table 3.4.7: Criteria for individual *in chemico/in vitro* methods – an example

Category	Key event-based sensitization assays	OECD TG 442C Test Guideline for \dot{v} addressing the AO ent binding to protei	P Key Event on	1	The mean cysteine/lysine % depletion > 6.38% Or the mean cysteine % depletion > 13.89	The mean NAC and NAL % depletion ≥ 4.9% Or NAC% depletion ≥ 5.6%	Not applicable
	Method described in Appendix I The Direct Peptide Reactivity Assay (DPRA) ^a	Method described in Appendix II The Amino acid Derivative Reactivity Assay (ADRA)*	Method described in Appendix III The kinetic Direct Peptide Reactivity Assay (kDRRA) ^b	-	%		
	Methods: in chemico hantenation by quanti towards model synthe cysteine (DPRA and J amino acid derivative lysine (NAL) (ADRA The criteria are based peptides percent deple depletion (kDPRA) ar depletion value (ADR cysteine or NAC perc unreacted lysine pepti measured can be apply	fying the reactivity of tic peptides containing (DPRA) or towards n is containing either cy). on the mean of cyste etion (DPRA), kinetic ind mean NAC and NA A). Predictions mode ent depletion value all de or NAL cannot be	Etest chemicals g either lysine or nodel synthetic steine (NAC) or ine and lysine rates of cysteine AL percent els based on the one in case the reliably				

DUCT SAL

Proposed GHS Table 3.4.7: Criteria for individual *in chemico/in vitro* methods – an example (cont.)

Category	OECD TG 442C Key event-based Test Guideline for <i>in chemica</i> skin sensitization assays addressing the AOP Key Event on covalent binding to proteins							
	Method described in Appendix I The Direct Peptide Reactivity Assay (DPRA) ^a	Method described in Appendix II The Amino acid Derivative Reactivity Assay (ADRA)*	Method described in Appendix III The kinetic Direct Peptide Reactivity Assay (kDPRA) ^b					

1A	Not applicable		$\log kmax \ge -2.0$
1B	Not applicable	Not applicable	Not applicable
Not classified	depletion ≤ 6.38% or	The mean NAC and NAL % depletion < 4.9% Or NAC% depletion < 5.6%	Not applicable
			and a state of the

GHS Informal working group on the use of nonanimal alternatives

- US core members:
 - Paul Brigandi
 - Janet Carter
 - Marianne Lewis
 - Joanna Matheson

Thank you

Extra slides

Proposed GHS Table 3.4.7: Criteria for individual in chemico/in vitro methods

Category	sensitization assay	OECD TG 442C Test Guideline for i s addressing the AC ent binding to prote	OP Key Event on	OECD TG 4 Key event-based Test Guid sensitization assays addressin on keratinocyte : ARE-Nrf2 lucifera	eline for <i>in vitro</i> skin ng the AOP Key Event activation	In vitro skin sensitiz	OECD TG ation assays addressin dendritic	g the AOP Key Eve	nt on activation of
	Method described in Appendix I The Direct Peptide Reactivity Assay (DPRA) ²	Method described in Appendix II The Amino acid Derivative Reactivity Assay (ADRA)*	Method described in Appendix III The kinetic Direct Peptide Reactivity Assay (kDPRA) ^b	Method described in Appendix IA <u>KeratinoSenx^{TM®}</u>	Method described in Appendix 1B Luxenx*	Method described in Annex I human Cell Line Activation Assay (h-CLAT)*	Method described in Annex II U937 Cell Line Activation Test*	Method described in Annex III IL-8 Luc assay*	Method described in Annex IV GARD skin ^{TME}
	Methods: in chemica battenation by quan- towards model synth or cysteine (DPRA a synthetic amino acid (NAC) or lysine (NA The criteria are base peptide percent depl depletion (kDPRA) i depletion values (AI cysteine or NAC per unreacted lysine pep measured can be app	tifying the reactivity tetic peptides contain and LDERA) or toward derivatives containing (L) (ADRA). d on the mean of cys etion (DPRA), kineti and mean NAC and N DRA). Prediction mo cent depletion value tide or NAL cannot l	of test chemicals ing either lysine rds model ng either cysteine teine and lysine ic rates of cysteine NAL percent dels based on the alone in case the be reliably	Methods: cell-based methods a keratinocyte activation, by ass luciferase, the Nrf2-mediated response element (ARE)-depe exposure of the cells to the tes Cell viability is quantitatively enzymatic conversion of the d The criteria are based on the in gene above a given threshold, concentrations. Criteria should of 3 repetitions.	essing with the help of activation of antioxidant ndent genes following t chemical. measured in parallel by ye MTT. aduction of the luciferase quantified at subtoxic	cell activation by eith marker(s) (<u>e.g.</u> CD54 transcriptional patter exposure of the cells Criteria should be me described in Annexer described in Annex I	et in 2 of 2 or in at least 2 I, II and III or in three	ge in the expression of a IL-8 expression or ic genomic biomarke 2 of 3 repetitions for	of cell surface the r signature followin test methods
1		NAL % depletion \geq	Not applicable	all met in 2 of 2 or in the same 2 of 3 repetitions:	2 of 2 or in the same 2 of 3 repetitions: 1. A luciferase	At least one of the following conditions is met in 2 of 2 or in at least 2 of 3 independent runs: The Relative	The following condition is met in 2 of 2 or in at least 2 of 3 independent runs: The stimulation index of CD86 is equal or	The Ind-IL8LA is equal or higher than (≥) 1.4 and the lower limit of the 95% confidence	The mean Decision Value (DV) is ≥0

Proposed Table 3.4.7: Criteria for individual in chemico/in vitro methods (cont.)

	the mean cysteine % depletion > 13.89 %	5.6%		 The cellular viability is higher than (>) 70% at the lowest concentration with induction of luciferase activity equal or above <u>1.5</u>. <u>fold</u> The EC_{1.5} value is less than (<) 1000 μM (or < 200 μg/mL for test chemicals with no defined MW) There is an apparent overall dose-dependent increase in luciferase induction 	as compared to the solvent control is observed in at least 2 consecutive non- cytotoxic tested concentrations (i.e. cellular viability is equal or higher than (2) 70%) 2. At least three tested concentrations should be non- cytotoxic (cellular viability equal or higher than (2) 70%).	Intensity of CD86 is equal to or greater than 150% at any tested concentration (with cell viability ≥ 50%) or the Relative Fluorescence than SV Intensity of CD54 is equal to or greater than 200% at any tested concentration (with cell viability ≥ 50%).	and/or interference is observed	IL8LA is equal or higher than (2) 1.0 in at least 2 out of a maximum of 4 independent runs	
1A	Not applicable		log kmax ≥ -2.0	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
1B	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable
Not classified	depletion $\leq 6.38\%$ or	The mean NAC and NAL % depletion < 4.9% Or NAC% depletion < 5.6%	Not applicable	At least one of the conditions for Category 1 is not met	At least one of the conditions for Category 1 is not met	None of the conditions for Category 1 is met	of CD86 is < 150% at all non-cytotoxic concentrations (cell viability ≥ 70%) and if no interference is observed	The Ind-IL8LA is < 1.4 and/or the lower limit of the 95% confidence interval of Ind-IL8LA is < 1.0 in at least 3 out of a maximum of 4 independent runs	

GHS Serious Eye Damage and Eye Irritation DAs

- TG467 adopted by OECD 6/30/22
- Can discriminate between Cat 1 (serious), Cat 2 (irritation) and NC
 - Cannot subclassify into Cat 2A or Cat 2B
- DAL-1: based on physico-chemical properties and *in vitro* data
 - Is for neat liquids, but not surfactants
- DAL-2: based on *in vitro* data
 - Is for neat liquids, not surfactants; and liquids and solids dissolved in water

Figure 3.3.1: Application of the tiered approach for serious eye damage/eye irritationa

GHS Serious Eye Damage and Eye Irritation DAs

	DAL-1 (VRM1)	DAL-1 (VRM2)	DAL-2
Physico-chemical properties	1 (water solubility) or a combination of 3 physchem properties (LogP, VP, ST)	1 (water solubility) or a combination of 3 physchem properties (LogP, VP, ST)	NA
<i>In vitro</i> methods	BCOP-LLBO (TG437)	BCOP-LLBO (TG437)	BCOP-LLBO (TG437)
	RhCE - EpiOcular EIT (TG492)	RhCE - SkinEthic HCE EIT (TG492)	STE (TG491)
			74 200/
Performance overall	69.20%	75.20%	74.30%
Performance for Cat 1 and NC, respectively	76.5% and 70.5%	76.5% and 79.7%	81.2% and 85.3%