CRITICAL EVALUATION OF GREENSCREEN® BENCHMARK 1 CHEMICALS TO IDENTIFY STRUCTURAL ALERTS

Society of Chemical Hazard Communication Conference April 20, 2016

Alicia McCarthy

University of Massachusetts - Lowell

Outline

- Introduction
 - Overview of Benchmark 1 Chemicals
 - Overview of GreenScreen[®] for Safer Chemicals (GreenScreen)
- Project Summary
 - Overview of Structural Alerts
 - Results
- Future Goals
- Questions?

Overview of Benchmark 1 Chemicals

- Product formulators need tools to quickly identify chemicals of high concern
- GreenScreen classifies the most hazardous chemicals, including PBT (persistent, bioaccumulative and toxic), CMR (carcinogenicity, mutagenicity and reproductive toxicity) or endocrine active chemicals, as Benchmark 1

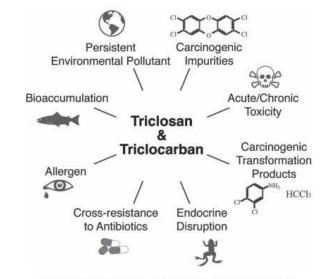


Image by Jason Drees, the Biodesign Institute at Arizona State University, produced for Rolf U. Halden's paper: On the Need and Speed of Regulating Triclosan and Triclocarban in the United States. Environ. Sci. Technol. 2014, 48, 3603–3611. Reproduced with permission.

- The GreenScreen is a comparative Chemical Hazard Assessment (CHA) method developed by Clean Production Action
- GreenScreen is freely and publicly accessible, transparent, and peer reviewed
- Builds on the U.S. EPA DfE Alternatives Assessment approach and aligned with national and international precedents (OECD, GHS, REACH)

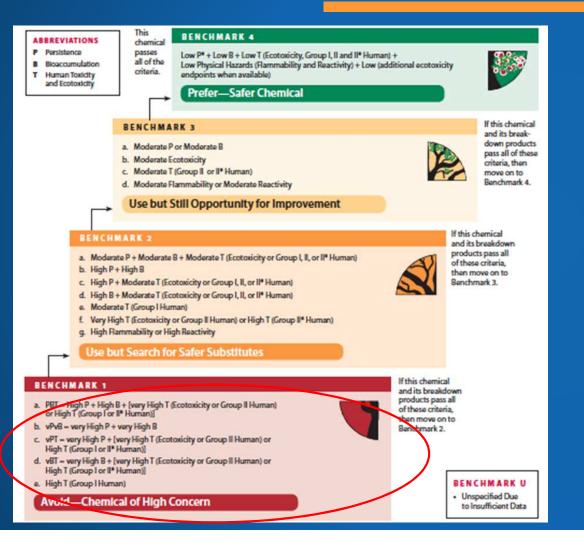
• All supporting resources at: http://www.greenscreenchemicals.org/

- Collect and evaluate data for 18 human health, environmental, and physical endpoints from relevant sources (e.g., test data, literature, models, analogs, hazard lists, etc.) for the chemical under assessment
- Prepared by scientists, toxicologists, and/or CPA licensed profilers.
- Assign level of concern (e.g., vH, H, M, L, or vL) for each of the 18 endpoints
 - Level of confidence for each hazard endpoint (identified by bold or italic font)
- Hazard scores are used to assign an overall Benchmark score, which is a simple way to compare relative hazards of chemicals.

Hazard Endpoints Evaluated in GreenScreen

Human Health Group I	Human Health Group II and II*	Environmental Toxicity & Fate	Physical Hazards
Carcinogenicity	Acute Toxicity	Acute Aquatic Toxicity	Reactivity
Mutagenicity & Genotoxicity	Systemic Toxicity & Organ Effects	Chronic Aquatic Toxicity	Flammability
Reproductive Toxicity	Neurotoxicity		
Dovelopmental Tovisity	Skin Sensitization		
Developmental Toxicity	Respiratory Sensitization	Persistence	
Endocrino Activity	Skin Irritation	Bioaccumulation	
Endocrine Activity	Eye Irritation	Dioaccumulation	

The GreenScreen® assesses hazards for 18 human health, environmental, and physical endpoints

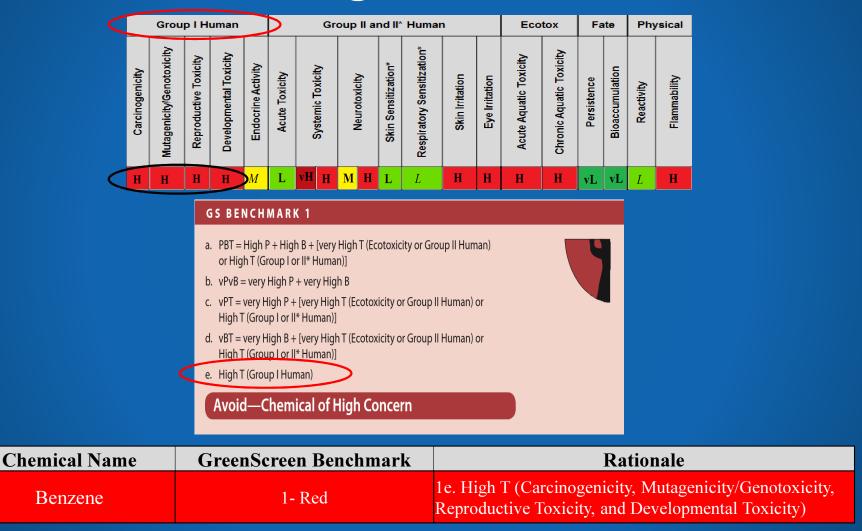

GreenScreen[®] Hazard Criteria Table

	Information Type	Information Source	List Type	High (H)	Moderate (M)	Low (L)				
	Data	GHS Criteria & Guidance		GHS Category 1A (Known) or 1B (Presumed) for any route of exposure	GHS Category 2 (Suspected) for any route of exposure or limited or marginal evidence of carcinogenicity in animals (See Guidance)	Adequate data available, and negative studies, no structural alerts, and GHS not classified.				
1		EPA-C (1986)	Authoritative	Group A, B1 or B2	Group C	Group E	2			
0		EPA-C (1996, 1999, 2005)	Authoritative	Known or Likely		Not Likely				
201-20		EU CMR (1)	Authoritative	Category 1 or 2	Category 3					
t)		EU CMR (2)	Authoritative	Care 1A or 1B	Carc 2		0			
ö		EU H-statements	Authoritative	H350 or H350i	H351		-			
5		EU R-phrases	Authoritative	R45 or R49	R40		4			
gei		EU SVHC	Authoritative	Reason for inclusion: Carcinogenic						
arcinogenicity	A Lists	GHS-[COUNTRY]" Lists ("Korea, Japan, Indonesia, Australia, Europe, New Zealand, and Taiwan)	Screening	Category 1A or 1B	Category 2	Not Classified				
ā		IARC	Authoritative	Group 1 or 2A	Group 2B	Group 4				
õ		MAK	Authoritative	Carcinogenic Group 1 or 2	Carcinogenic Group 3, 4, or 5		4			
-		NIOSH-C	Authoritative	Occupational Cancer						
		NTP-RoC	Authoritative	Known or Reasonably Anticipated						
		Prop 65	Authoritative	Known to the state to cause cancer						
		EPA-C(1986)	Authoritative		Group D					
	B Lists	EPA-C (1999)	Authoritative	Suggestive Evidence,	an carcinogenic potential	Ĩ				
	B LISTS	EPA-C (2005)	Authoritative	Sugg	potential	4				
		IARC	Authoritative							

Example of Completed Hazard Summary Table

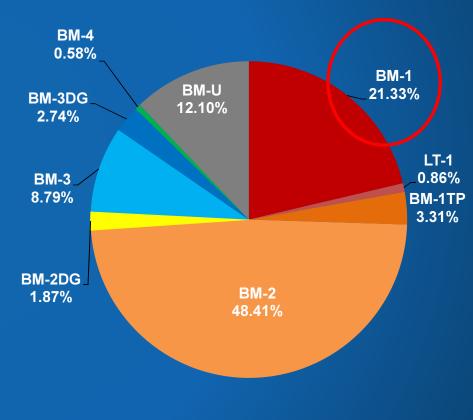
	Grou	p I Hi	uman		Group II and II* Human E										Fa	ite	Phy	/sical
Carcinogenicity	Mutagenicity/Genotoxicity	Reproductive Toxicity	Developmental Toxicity	Endocrine Activity	Acute Toxicity	Systemic Toxicity		Neurotoxicity	Skin Sensitization*	Respiratory Sensitization*	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Reactivity	Flammability
Н	H	H	H	М	L	vH	I	M H	L	L	H	H	H	Н	vL	vL	L	H

Level of Confidence Bold vH, H, M, L, or vL = measured data or high quality surrogate DG= data gap Italic vH, H, M, L, or vL = estimated data (analog or model)



- The combination of hazard classifications for 18 assessed endpoints (Step 1) translates into a Benchmark score ranging from 1-4
- A Benchmark score supports decision-making:
 - BM1 phase out
 - BM2 manage to use safely
 - BM3 getting there
 - BM4 inherently low hazard

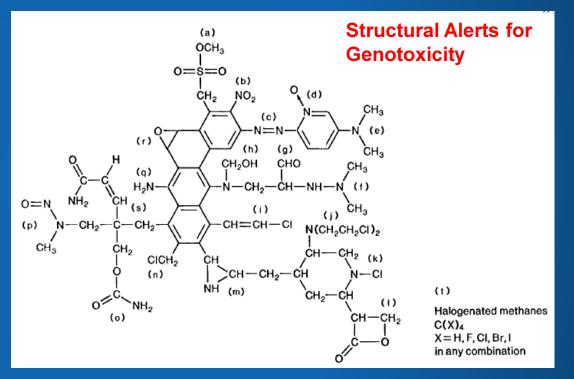
Benchmark U = Undetermined due to insufficient data


Aligned with Regulatory Drivers

Benchmarking Example – Benzene

Project Overview

- Aim: Identify the structural alerts for Benchmark 1 chemicals (Chemicals of High Concern)
- Fact: To date, approximately 21% of GreenScreened chemicals are classified as Benchmark 1 chemicals
- Issue: Conducting GreenScreens require toxicological expertise and are timeconsuming


Overview of Structural Alerts

- Chemical Classes, Functional Groups, or Substructures that are likely to lead to a particular toxic effect
- A few articles are publically available that have identified structural alerts for specific hazard endpoints

Reference	Toxic Effect	Example of Structural Alert				
Ashby & Tennant 1988, 1989	Genotoxicity					
Payne & Walsh 1994	Skin Sensitization					
Grandjean & Landrigan 2006, 2014	Developmental Neurotoxicity	Pb 207.2 Lead				

Ashby and Tennant

- In toxicology, the Ashby and Tennant composite structure for genotoxic alerts is well-known
 - Easily depicts potential genotoxins, and is useful for carcinogenicity prediction
- In a manner similar to Ashby and Tennant, Identify an overall structure useful for predicting Benchmark 1 chemicals (i.e., chemicals with significant human health and environmental hazards)
- A structure for Benchmark 1 chemicals would be helpful during the product formulation
 - Easily flags potential problematic chemicals

Ashby and Tennant (1988, 1989)

Materials

- 146 Chemicals: Benchmark 1 Chemicals Evaluated by ToxServices
 - Criteria for inclusion in the final data set:
 - Full GreenScreen reviews
 - Finalized prior to December 1, 2015
 - Performed after January 1, 2013
 - Excluded inorganics
 - Chemicals with known structures
- 95 Benchmark 1 Chemicals for Final Review

Methods

- Compiled 95 Benchmark 1 chemicals into a Excel spreadsheet to create a matrix
 - Chemical structures
 - Retrieved from GreenScreens
 - Retrieved from ChemIDplus
 - Hazards
 - Sub-benchmark
- Functional groups of every chemical were analyzed for well-known global structural alerts
 - E.g., halogenated compounds
- Chemicals were assigned to chemical classes
- The matrix was filtered by chemical class
 - Determined that specific chemical classes could be grouped together
- Groups of chemical classes evaluated for patterns
 - Toxicity similarities in the 18 endpoints
 - Sub-benchmarks patterns

Preliminary Organization of Possible Structural Alerts

Hazard Endpoint

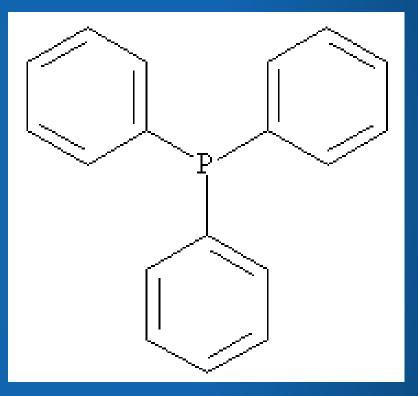
Chemical	Gr	oup	l Hu	ma	n	Group II and II* Human									Ecoto x		Fate		Physical			
Name	С	м	R	D	E	AT	ST	ST		N SnS*		SnR*	SnR* IrS IrE		AA	CA	P B		Rx F		Chemical Class	
							single	R*	singl e	R*							\wedge					
Chemical 1	L	L	М	м	DG	Н	м	н	DG	DG	Н	DG	н	н	н	н	vH	vL	vH	Μ	Methacrylic esters (based on monomers structures)	
Chemical 2	L	L	М	м	DG	vH	М	М	DG	DG	н	DG	н	Н	М	н	vH	L	vH	М	Methacrylic esters and amide (based on monomers structures)	
Chemical 3	М	L	L	L	М	L	н	м	М	DG	L	DG	м	м	vH	н	vL	vH	L	L	Methacrylic esters	
Chemical 4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	vH	vH	vH	М	NA	NA	Methacrylic esters salts (Zinc)	
Chemical 5	М	L	L	L	DG	L	М	L	DG	L	L	DG	L	м	н	vH	vH	vL	vH	L	Methacrylic esters and ethers	
																Γ	V				16	

Preliminary Organization of Possible Structural Alerts

Sub-Benchmark

Structural Alerts	Chemical Class	Chemical Name	Sub-Benchmark	
	Methacrylic Esters (based on monomers structures)	Chemical 1	1C	
	Methacrylic Esters and Amide (based on monomers structures)	Chemical 2	1C	
Methacrylic Esters	Methacrylic Esters	Chemical 3	1D	
	Methacrylic Acid, Zinc Salt	Chemical 4	1C	
	Methacrylic Esters and Ethers	Chemical 5	1C	

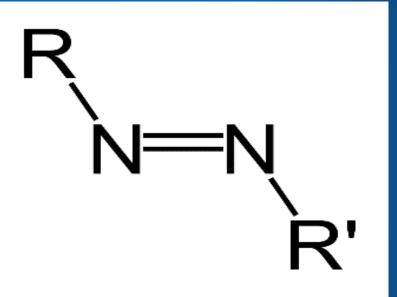
Results


- 11 Potential Structural Alerts (SA) identified
- These are <u>potential</u> alerts due to the relatively low number of chemicals in each potential SA group
- Further analysis will be required to confirm these results

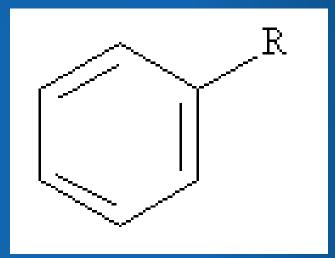
Results – Potential SAs

Potential Structural Alert	Number of Chemicals Within SA
Aromatic Organophosphorus	4
Azo Compounds	18
Benzene Substituted Alkyl, Alkyl Ether, Alkyl Halide and Alcohol	4
Bisphenol and Phenol Derivatives	7
Carboxylic Acid Derivatives of Carbon Chain Length Above Five	6
Compounds with Platinum	2
Compounds with Zinc	4
Cyclosiloxane Derivatives	3
Methacrylic Esters	5
Naphthalene Derivatives	13
Nitrogen Heterocyclic Aromatic Compounds	6

Aromatic Organophosphorus


- Associated with:
 - High to Very High
 - Chronic Aquatic Toxicity
 - Persistence
- Possible Benchmark 1C (vPT)

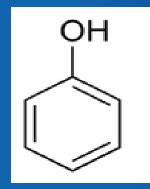
Azo Compounds

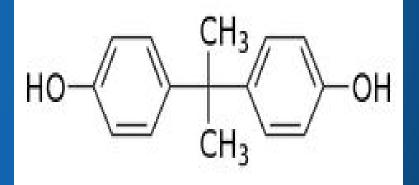

- Associated with:
 - Very High
 - Persistence
 - High
 - Skin Sensitization

Possible Benchmark 1C (vPT)

Benzene Substituted Alkyl, Alkyl Ether, Alkyl Halide and Alcohol

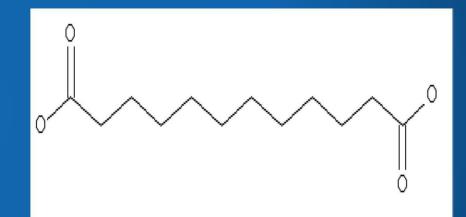
- Aromatic compounds within the dataset, but only those that had a substituted benzene ring were included in this alert group.
- Associated with:
 - High
 - Carcinogenicity
- Possible Benchmark 1E (High T)

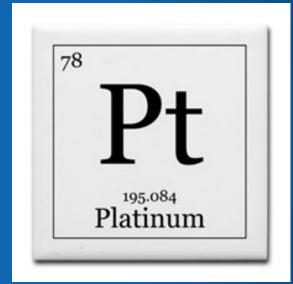



Where R= alkyl, ether, alkyl halide or alcohol

Bisphenol and Phenol Derivatives

Associated with:

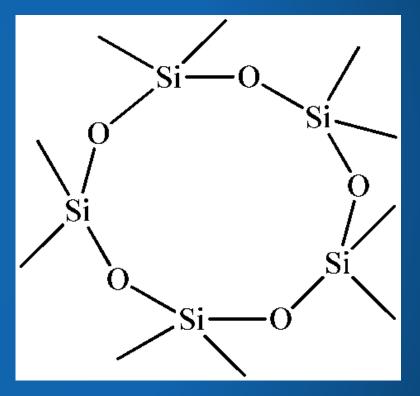

- High
 - Carcinogenicity
 - Developmental Toxicity
 - Endocrine Activity
- Possible Benchmark 1E (High T)


Carboxylic Acid Derivatives of Carbon Chain Length Above Five

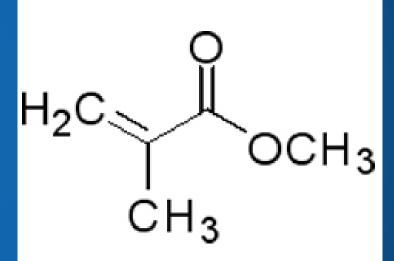
- Associated with:
 - High to Very High
 - Eye Irritation
 - Acute Aquatic Toxicity
 - Chronic Aquatic Toxicity
 - Persistence
- Possible Benchmark 1C (vPT)


Compounds with Platinum

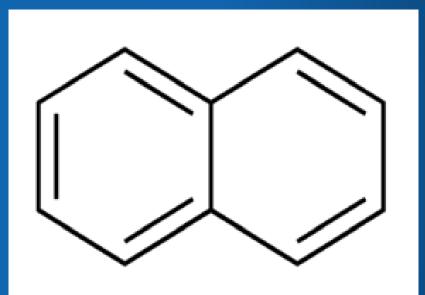
- Associated with:
 - Very High
 - Eye Irritation
 - Persistence
 - Bioaccumulation
 - High
 - Skin Sensitization
 - Respiratory Sensitization
 - Skin Irritation
- Possible Benchmark 1A (PBT), 1B (vPvB), 1C (vPT), and 1D (vBT)


Compounds with Zinc

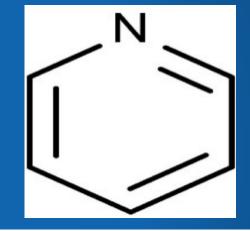
- Associated with:
 - Very High
 - Persistence
 - High to Very High
 - Acute Aquatic Toxicity
 - Chronic Aquatic Toxicity
- Possible Benchmark 1C (vPT)

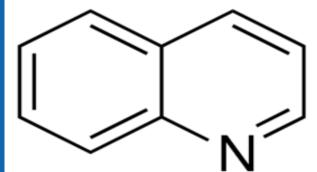

Cyclosiloxane Derivatives

- Associated with:
 - Very High
 - Chronic Aquatic Toxicity
 - Persistence
 - Bioaccumulation
- Possible BM 1A (PBT), 1B (vPvB), 1C (vPT), and 1D (vBT)


Methacrylic Esters

- Associated with:
 - Very High
 - Persistence
 - High to Very High
 - Acute Aquatic Toxicity
 - Chronic Aquatic Toxicity
- Possible Benchmark 1C (vPT)


Naphthalene Derivatives


- Associated with:
 - Very High
 - Bioaccumulation
 - High to Very High
 - Eye Irritation
 - Skin Irritation
 - Acute Aquatic Toxicity
 - Chronic Aquatic Toxicity
- Possible Benchmark 1D (vBT)

Nitrogen Heterocyclic Aromatic Compounds (Pyridine and Quinolone Derivatives)

- Associated with:
 - Very High
 - Chronic Aquatic Toxicity
 - Acute Aquatic Toxicity
 - High to Very High
 - Eye Irritation
 - Persistence
 - Bioaccumulation
- Possible Benchmark 1A (PBT)

Future Goals

- Expand the data set to evaluate additional Benchmark 1 chemicals
 - Verify the potential structural alerts identified in this project
 - Identify further potential structural alerts
- Compare the preliminary set of potential structural alerts to Benchmark 2, 3, and 4 chemicals that are in the same chemical class
 - Further verify structural alerts
 - Potentially identify more specific features within the Benchmark 1 structural alerts
- Create multiple composite structures containing structural alerts for organic, organometallic, and polymer Benchmark 1 chemicals
- Compare the function of chemicals versus potential structural alerts

References

- Ashby, J., and Tennant, R. W. (1988). Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. *Mutation Research/Genetic Toxicology*, 204(1), 17-115. Retrieved December, 2015.
- Ashby, J., Tennant, R., Zeiger, E., & Stasiewicz, S. (1989). Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program. *Mutation Research/Genetic Toxicology*, 223(2), 73-103. Retrieved December, 2015.
- Cleaner Production Action. (2013). GREENSCREEN® FOR SAFER CHEMICALS CHEMICAL HAZARD ASSESSMENT PROCEDURE. Retrieved December, 2015, from http://www.cleanproduction.org/static/ee_images/uploads/resources/GreenScreenv1-2_Guidance_Assessment_Procedure_FINAL_2013_9_18.pdf
- All GreenScreen Benchmark Scheme, Criteria, and Method information and images.
- Mittal, K. L., & Fendler, E. J. (2013). Solution behavior of surfactants: Theoretical and applied aspects (Vol. 2). Place of publication not identified: Springer. Pg. 171
- M. P. Payne and P. T. Walsh (1994). Structure-activity relationships for skin sensitization potential: Development of structural alerts for use in knowledge-based toxicity prediction systems *Journal of Chemical Information and Computer Sciences*, *34* (1), 154-161. Retrieved December, 2015.
- Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. *The Lancet Neurology*. 2014;13(3):330-338. doi:10.1016/S1474-4422(13)70278-3. Retrieved December, 2015.

Acknowledgements

- ToxServices
 - Dr. Margaret H. Whittaker
 - Emily Golden
 - Dr. Mouna Zachary
- University of Massachusetts Lowell

 Dr. Joel Tickner
- Society of Chemical Hazard Communication
 Dr. Robert Skoglund at Covestro

Society for Chemical Hazard Communication

Thank you!

Questions?

Alicia McCarthy Alicia_McCarthy@student.uml.edu

Emily Golden, M.F.S. egolden@toxservices.com

Mouna Zachary, PhD mzachary@toxservices.com

Margaret Whittaker, Ph.D., M.P.H., CBiol., F.R.S.B., E.R.T., D.A.B.T. mwhittaker@toxserivces.com